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Abstract: In many pharmaceutical applications one postulates a linear relationship between variables. The usual linear 
least-squares methods are appropriate when the values of the independent variable are constants, and the dependent 
variable is subject to error. When both variables are subject to error, as in assay validation, calibration, and general 
correlation, the measurement error model (also called errors-in-variables) should be used especially when independent 
variable error is appreciable. In this paper, the theoretical properties of errors-in-variables methods are demonstrated 
with examples, and a technique for assessing the variability of parameter estimates without normality assumptions is 
presented. Robust methods resistant to outliers and not requiring normality assumptions, are also described. 
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Introduction 

When analysing pharmaceutical data, one 
often postulates a linear relationship between 
variables. In quantifying a dose-response 
relationship or evaluating a stability profile, 
the usual linear regression methods can be 
used, since the independent variable (X) con- 
sists of constant values at which corresponding 
measurements of the dependent variable (Y) 
are made. In ordinary linear regression, only Y 
is assumed subject to error. In this case it is 
well-known that ordinary least-squares (under 
the customary additional assumptions) gives 
the best linear unbiased estimates of the slope 
and intercept parameters. 

In many other situations, such as assay 
validation, calibration, and general corre- 
lation, both X and Y are subject to error and 
ordinary least squares may be inappropriate 
since the absolute magnitude of the slope is 
underestimated. Both X and Y can be subject 
to error from two sources. The first source is 
random error associated with the assumption 
that Y and possibly X are random. The second 
source is the measurement error made in 
determining the values of X and Y. When both 
X and Y are assumed random the model is 
called structural. We will consider the most 
general case - the structural model where 
both X and Y may be subject to measurement 
error. When both variables are subject to 

error, the slope estimated by ordinary least 
squares is biased toward zero [l]. Thus, the 
measurement error model (also called errors- 
in-variables) should be used to estimate the 
slope and intercept [l]. The variability of the 
parameter estimates, and of the correlation 
coefficient, is also assessed, both with and 
without assuming normality for X and Y. 
Robust methods, resistant to outliers as well as 
not needing normality assumptions [2-91 are 
also useful in many instances. 

Methods 

Following the derivation and notation in 
Fuller [l], consider parameter estimation for 
the measurement error model, given knowl- 
edge of the relative magnitude of the error 
variances of the two variables. The model is 

Yi = PO + Plxi9 

(1) 

(yi, xi) = oli, xi) + Cei7 ui)~ 

where (Y,, Xi) is observed, yi is the true value 
of the dependent variable, xi is the true value 
of the independent variable, and (ei, ui) are the 
measurement errors, assumed to be normally 
distributed. The terms ‘independent variable’ 
and ‘dependent variable’ are sometimes still 
used although the model is symmetric in x and 
y for p1 # 0. 
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When the ratio 

6 = u;;uee (2) 

is known, the model is the classical errors-in- 
variables model. 

The estimator of the slope is 

I%= 
mw - Smxx + [(myy - Smxx)* + 4Sm$,]” 

2m2-Y 
(3) 

where myy, mxy, and mxx are the sample 
variance of y, covariance, and variance of x, 
respectively, and S is the estimated ratio of y to 
x error variances, given a default value of one. 

The estimator of the intercept is then 

so = F - p,x (4) 

where (Y,X) are the sample means. 
The estimated standard error of fil is 

SE{fi,} = {(n - 1))‘6;: [~&” + ~Js,” - “:“{; 

where 

s,,,, = (n - 3-9 (n - 1) (6 + &t,t, (6) 

. 
uxx = (26)loYY - 6mxx)* + 46msy]‘h 

mYY - smxx)> (7) 

1 u,, = (26)-l {myy + Gmxx 
- [(myy - Smxx)* + 46m$fY]“} (8) 

ciU” = -P1L (9) 

and 

SE{&,} = [K’s,, + X2 V{p,}]‘h (10) 

where 

and n is the sample size. 
When X and Y are normally distributed, for 

II 5 3, a 1 - (Y confidence interval for the 
correlation coefficient, p, is given by 

tanh[arctanh(p) - zd2(n - 3)“] G p 
G tanh[arctanh(p) + ~~~(12 - 3)“] (12) 

of the standard normal distribution. This con- 
fidence interval is based on Fisher’s Z trans- 
formation [lo]. 

If the variables are not normally distributed, 
then the standard errors for the parameter 
estimates and the confidence interval for the 
correlation coefficient presented above, may 
not be valid. An alternative method, the 
bootstrap [ll], can be used to estimate stan- 
dard errors and confidence intervals when 
nonnormality is present. We propose the 
following procedure: since both X and Y were 
subject to error, (Yj, Xi) pairs were resampled, 
with replacement, from the original data and 
the errors-in-variables parameter estimates 
and the correlation coefficient computed for 
each resample. Bootstrap standard errors and 
confidence intervals were then calculated from 
the empirical distributions. Since the re- 
sampling was done with replacement there was 
a very slight chance of obtaining anomalously 
extreme estimates in the tails of the bootstrap 
distributions. Thus, the distribution of the 
correlation coefficient was trimmed 1% at each 
end before the confidence interval was calcu- 
lated. Instead of standard errors, the median 
absolute deviations of the parameter estimates 
are presented. These are based on the un- 
trimmed distributions and are defined as the 
median of the absolute values of the differ- 
ences between each element of the distribution 
and the median of the parameter distribution. 
More complex methods for adjusting bootstrap 
confidence intervals for the correlation co- 
efficient are also available [12]. 

When outliers are present in the data, the 
least-squares based regression techniques 
(ordinary and errors-in-variables) can be 
seriously affected. If nonnormality is also 
present, interval estimation can be especially 
unreliable since the parameter estimates are 
being shifted due to the outliers in addition to 
the violation of the normality assumption by, 
possibly, other causes. When only Y is subject 
to error, a method such as least absolute value, 
or Li, regression is quite resistant to outliers. 
When both X and Y are subject to errors, 
techniques based on using the median of all 
possible defined and finite pairwise slopes [2, 
3, 51 or the least median of squares [6, 8, 91 
have been proposed. 

Results and Discussion 

where zN12 is the upper a/2 probability point To demonstrate the methods, several of the 
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hydrophobicity measures considered in [ 133 
were analysed to determine linear relationships 
between variables. The data appear in Table 1 
of [13]. In Table 1 of this paper, ordinary and 
errors-in-variables regression estimates are 
presented, using the logarithm of the exper- 
imental n-octanol-water partition coefficient 
(log P) as the dependent variable, and the 
logarithm of the LC capacity factor (k’) deter- 
mined on immobilized artificial membrane 
with acetonitrile-pH 7.00 buffer (20:80, v/v) as 
the independent variable. In Table 2 log P is fit 
to a k’ value similar to the one used in Table 1, 
but with acetonit~le-pH 7.00 buffer (25:75, vl 
v). In Table 3, the k’ value used in Table 2 is fit 
to the logarithm of the k’ from a deactivated 
hydrocarbonaceous silica column, normalized 
to 0% organic modifier in mobile phase. In all 
tables, all solutes were used, and the nomen- 
clature is dependent (Y) vs independent (X). 
The estimated ratio of error variances, 6, is set 
to one. 

pronounced in Tables 1 and 2. Since no 
departure from normality was evident for the 
variables in Tables 1 and 2, the usual normal 
theory standard errors and confidence interval 
were used. In Table 3, some moderate de- 
parture from normality for the variables was 
detected. (Note that though log kiT5 was used 
in both Tables 2 and 3, many more values 
could be used in Table 3). Thus, the errors-in- 
variables parameter standard errors and con- 
fidence interval were resampling-based. For 
comparison, the normal theory standard error 
for the errors-in-variables intercept was 0.134, 
and the standard error for the slope was 0.037. 
The correlation coefficient was not redefined 
for the errors-in-variables case, and from Table 
3 it is clear that the bootstrap confidence 
interval is considerably narrower than the 
interval based on the normal theory based 
Fisher Z-transformation. 

As predicted in theory, the slopes estimated 
in Tables l-3 from e~ors-in-variables exceed, 
in absolute magnitude, those obtained from 
ordinary least squares. The effect is especially 

An illustrative example of the value of robust 
methods is the comparison of two analytical 
methods TOA and BGE for measuring the 
packed cell volume (PCV), or hematoc~t [9]. 
The data are in the Appendix of [9]. To test 
proportional and additive accuracy, one can 

Table 1 
Comparison of ordinary linear regression with errors-in-variables linear regression, log P vs log k’a,, (all solutes). 
Normality assumption is made for both variables 

Intercept, 
n k, (SE) 

-__ 

Ordinary linear regression 19 2.299 (0.373) 
Errors-in-variables linear regression 19 1.510 (0.512) 

*Confidence interval based on Fisher’s Z-transformation. 

Slope, 
8, (SE) 

1.527 (0.264) 
2.119 (0.369) 

Correlation coefficient 
(95% confidence interval) 

0.814 (0.572, 0.926)* 

Tabte 2 
Comparison of ordinary linear regression with errors-in-variables linear regression, log P vs log k’75 (all solutes). 
Normality assumption made for both variables 

intercept, 
n Btr (SE) 

Ordinary linear regression 19 2.405 (0.391) 
Errors-in-variables linear regression 19 1.438 (0.580) 

*Confidence interval based on Fisher’s Z-transformation. 

Slope, 
Pi (SE) 

1.699 (0.324) 
2.551 (0.491) 

Correlation coefficient 
(95% confidence interval) 

0.786 (0.517, 0.914)* 

Table 3 
Comparison of ordinary linear regression with errors-in-variables linear regression, log k’T5 vs log k’, (all solutes). 
No normality assumption made for errors-in-variables variability measures 

Intercept, 
Btr (SE) 

Slope, 
n a, (SE) 

Ordinary linear regression 29 -0.229 (0.130) 0.389 (0.036) 
Errors-in-variables linear regression 29 -0.271 (0.108)$ 0.401 (0.029)$ 

*Confidence interval based on Fisher’s Z-transformation. 
t Confidence interval is based on the trimmed bootstrap, B = 2000. 
$Median absolute deviations from the untrimmed bootstrap, B = 2OC!O. 

Correlation coefficient 
(95% contidence interval) 

0.902 (0.799,0.953)* 
0.902 (0.826, 0.954)t 
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Table 4 
Comparison of hematocrit (PCV) methods, BGE vs TOA 

n 
intercept 
Bo (SE) 

Slope, 
0, (SE) 

Ordinary linear regression 

Errors-in-variables linear regression 

Robust linear regression 
(The&Sen) 

112 0.163 (0.035) 0.586 (0.097) 
(0.093, 0.232)* (0.395,0.778)* 

112 -0.116 (0.081) 1.365 (0.226) 
(-0.276, 0.~5)~ (0.918, 1.812)t 

112 0.013 
(-0.014, O.O45)8 (k&9, 1.081)$ 

*95% Confidence interval, normal theory based. 
t Asymptotically normal theory based 95% confidence interval. 
*Order-statistic based 95% confidence interval, large sample approximation. 

0 

0 

0 

0 

i 

0 

0 

0 

0 

TOA 

Figure 1 
Comparison of hematocrit (PCV) techniques: BGE (Y) vs TOA (X). (----) Ordinary least squares: (- - - -) errors-in- 
variables; (, t ’ . .) robust regression. 

test whether or not the slope and intercept are Note that the robust method used is valid 
significantly different from one and zero, when both variables are subject to error [3]. 
respectively. The data include several serious The errors-in-variables and robust techniques 
influential outliers, and in Table 4 and Fig. 1 both lead to the conclusion that there are no 
the effect on the parameter estimates and fitted significant proportional or additive biases 
lines is substantial. The ordinary least squares between the hematocrit methods since the 
estimates are most severely compromised. The confidence intervals for the slope and inter- 
errors-in-variables slope estimate indicates the cept include 1 and 0, respectively. The 
marked underestimation of the slope by ordinary linear regression results, however, 
ordinary least-squares, though the errors-in- indicate differences in both propo~ionai and 
variables method is also affected by outliers. additive accuracy. Thus, use of ordinary least 
The robust linear regression [Z-4] results show squares when both variables are subject to 
the effect of the outliers on the ordinary and error, and/or when outliers are present can 
errors-in-variables methods. lead to erroneous conclusions. Additionally, 
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the robust method is resistant to departures 
from normality by any cause. 

There are other robust methods [5, 61 that 
are even more resistant to outliers than the one 
used in this paper, but they can exhibit local 
instability [8] or may be computationally 
burdensome 171. Also, standard errors or 
confidence intervals have not been developed 
for these methods. 

These examples reinforce the theoretical 
results comparing regressions techniques when 
both variables are subject to error, outliers are 
present, and provide methods to assess vari- 
ability when normality assumptions might be 
untenable. 

There are alternative approaches proposed 
for errors-in-variables estimation [1, 14-161, 
but the method described here is realistic and 
flexible. In particular, the value of 6 can be 
adjusted to account for the relative importance 
of the error variances. A value of one gives 
equal importance to horizontal and vertical 
deviations. For example, a value of 4 would 
give four times the importance to the vertical 
deviations, and a value of l/5 gives five-fold 
importance to the horizontal distances. Given 
knowledge of how precisely the variables were 
measured, one could finetune 6 for each 
specific case. Measurement error models can 
also be used when there are multiple indepen- 
dent variables and for nonlinear regression 
models. 

Computations were performed using the 
SAS system [17]. Bootstrap methods were 
applied using a modi~cation of a resampling 
program [18] using data pairs rather than 
residuals since both variables were considered 
random. 
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